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About the Recognition and Reconstruction Two
Unknown Functions From Known Their Tandem

Vladimir V. Arabadzhi

Abstract— Paper is devoted to the area of processing of
physical signals and data or artificial perception. The incoming
data are presented in the form of defined sum of two unknown
functions, spaced on finite carrier. Practical examples of the
functions searched for can be presented: (a) by very closely
spaced two atomic spectrums of radiation; (b) by the output
signal of some telescope, scanning two point-like sources with
angle distance between each other much less, than the angle
width of main petal of telescope's directivity pattern. So the
presented result can be classified as some case of the known
problem of superresolution. It is shown, that two functions of
tandem (mutually overlapping each other) can be reconstructed
separately by using only three it is correct chosen numbers. The
class of functions (and their tandems), which are overlapping
each other and allows single reconstruction of both searched
functions and also conditions of the correctness of the decision
are formulated. The method of separation of two functions had
been tested numerically on the variety of typical practical
examples. The stability of suggested numerical procedure is

confirmed in the presence of uncorrelated errors of
measurements and calculations at each point of tandem.
Index Terms—About four key words or phrases in

alphabetical order, separated by commas.

I. INTRODUCTION

Usually the problem reconstruction of signals is considered in
the presence of noise and interpreted as extraction of signal
U (z) covered by noise, so the measured signal can be of the

form W (z) =U(z) + £(z), where £(z) - stationary noise with
mean-square value
o =< 52(2) J2
correlation interval
7. << L [1].
Below we will consider some untraditional statement of the
problem.

Usually the problem reconstruction of signals is considered in
the presence of noise and interpreted as extraction of signal
Statement of the problem

STATEMENT OF THE PROBLEM

We have only two unknown smooth and mutually overlapping
functions U(z) , V(z) , which are forming exactly

predetermined smooth source function W(z) =U(z) +V(z)

68

on the carrier |z| < L. We find the single function U (z) and
single function V(z) in Figure 1-a.

Then we do important assumption: W (z) is presented by the

tandem (all variables and numbers, used below, are assumed
dimensionless) of two smooth functions U(z) and V(z) ,

which are overlapping each other at any point of the same
carrier |z| < L. No any point z =z* on above carrier where
function U(z*) =0 at V(z*) 20 or V(z*) =0 at U(z*) # 0.
Itself determination W (z) as "two functions™ nothing do not
signify. In realities possible to name such combination “one
function”, or suppose, that W (z) consists of tens of functions.
To avoid the uncertainty, we must say the important thing:

function U(z) has a centre of symmetry z,, and function

V(z) has a centre of symmetry z, . In addition the searched

functions U , vV are assumed mutually linearly independent,
and we must find single solution for tandem U , V on chosen
class of functions (see below in Section 1V). Such problems
can appear in investigations of closely spaced spectrums of
atomic radiation or in resolutions of astronomic sources by
radio antennas [2]-[4]. Below we suppose negligible weak
noise (see Figure 1-b)

o <Ay Ay A Q)
where symbols A, >0, A, >0, A, >0 mean the
characteristic magnitudes
Ay =0t W2@pz/@LT 2,

Ay = U2(@dz/U)] 2,
A =11 VA (@)z/uT
of values W (z) ,U (z),V (z), following (1),
W(z) =U(2) +V(2). )

Both component U (z), V(z) of tandem is assumed function,
symmetrical relating to some point (symmetry axis) z;, , z,

correspondingly. Figure 1-c illustrates the cases of
generalized symmetry of the following form: value of
function U(-z) (or V(-z)) are predetermined by the value

of function U(z) (or V(z) ) by coefficient of symmetry
(coefficient of reflection) as was described in the assumption
H in the section 111).
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Figure 1

I1l. ASSUMPTIONS (HYPOTHESIZES)

A . Distance 2a between centers z;, and z, of symmetry
of functions U(z) and V(z) correspondingly is assumed
a=a, 0=0, (A=1 ifyes, A=0 ifno).

B . Center point 6 = (z, —z,)/2 between two centers of
symmetry is assumed placed in the point 6 =0, (B =1 if
yes, B =0 if no).

C. Symmetry center of function U (z) is spaced in the
point z=0,+a, (weassume thishypothesisistrue C =1 if
yes, C =0 ifno).

D . Symmetry center of function V(z) is spaced in the
point z=0,-a, (we assume this hypothesis is true D =1 if
yes, D=0 ifno).

E . Points z, and z, are spaced sufficiently far from
borders + L . In other words, we assume relation |6i a| << L.

F . the value of function U(z) in the start-point z =6
U@) =p (we will check this hypothesis step by step F =1
if yes, F =0 if no).

G . Function f“U (z) =T, (z) of symmetry of function
U(z) (and U(z)) (G =1 ifyes, G =0, if no).

H . Function i:v (z) =T, (z) of symmetry of function V(z)
(and V(z)) (H =1, if yes, H =0, if no). Simplest cases of
symmetry present Iy, , =+1, however one can use more
of =Iy(@U(2) ,
V(-z) =T, (z)V(z) (Figure 1-c). Functions Iy, (z) , I, (2)

(coefficients of symmetry, coefficient of reflection,...) must
provide one-to-one correspondence of functions U (z) and

U(-z), V(z) and V(-z), not breaking their smoothness.
i Ve <w@) . \\7 (iL)‘ «<MW@)|

general  form symmetry  U(-z)

©)

UL <w@) . ‘G(iL)‘ «<MW(@)| atvgs<L.

In other words, functions are assumed smoothly going closely
to zero together with their smooth first derivatives (see Figure
1-a).

K . Functions W(z),U(z),V(z) are assumed smooth at
v|z| < L. Their characteristic spatial scales are of the same

order with L/2.
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Socat ANBNCNDNENFNGNHNINK=L

we  will get result |V(z)—\7(z)| <<

U@ -0@)| <W@)|

the searched solutions which must be maximally closely to
U(z)and V(z) correspondingly.

_+ Where U(z) and V (z) represents

IVV. TANDEM RESTORATION PROCEDURE

Now we consider the special computing procedure, which
represents the base of all further investigations. Figure 2-a
represents smooth function spiral process of tandem
restoration. For the schematic model of pervious concrete
problem we try to find a single solution for both functions of
tandem.
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Figure 2

The appearance sequence of interpolation nodes (see below)
resembles the linear structure of image light sources, caused
by one light point-like source spaced in the point z=9
between parallel plane mirrors with coordinates z =0+a .
Spiral begins (see Fig 2-a) in the point 6 and goes to the left.
Vertical transitions of spiral line are caused by equation (2),
horizontal transitions of spiral line are caused by concrete

type of symmetry I, (z) , I, (z) of searched functions
U(z),V(z) correspondingly. Table 1 shows the generation of
spiral; sequences of interpolation nodes X ={x;}, p ={p;},
g ={0;} (i =123,..,13), when starting from point z=6 to
the left (see Figure 2-a,b).

Table | Spiral sequence of interpolation

X, =6 pp=p G =W(x)-p,
X, =023 P, = Py (@) dy =W(x3) = P,
Xy = 0+ 43 4; =4, /T, (33) Py =W (X3) — 03
X, =064 Pa = Paly, (53) Qg =W(X,) = Py
Xs = 0+ 83 95 =q, /T, (73) Ps =W (X5) —ds
Xg = 0104 Pe = Psly, (92) Qs =W (Xg) — Pg
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X; =0+128 | g, =qg/L, (118) | p; =W(x;) -0y
Xg = 60-143 | pg =q,L, (133) dg =W (xg) — Pg
X =0+163a | gy =0qg/Ty (153) Py =W (Xg) —dg
X0 = 06-188 Pio = Poly (73) | Gyo =W (X0) — Pyg
X, =0+20a | g4 =0y /1:\/ (19a) Prp =W(X1) — g

Table 11 shows the generation of spiral sequences y ={y;},

p={o;}, v ={y;} (j=123,..13) of interpolation nodes,
when starting from point z =6 to the right (see Figure 2-c).

Table Il Spiral sequence of interpolation nodes

y; =6 Y1 =0 =P
Yo =0+28 | w,=w /T, @) | 0, =W(Y,) -,
y; =6-4a 93 = @,I (33) w3 =W(y3) -3
Y, =0+63 | v, =w,y/L (58) ©q =W(Yy) -y,
ys =0-8a 95 = puIy (73) w5 =W(Ys) - 95
Y =0+108 | wg =y, 1T, (93) P =W (Yg) - ¥
y; =0-128 | ¢, = gl (113) w7 =W(y;) -9,
Yg =0+142 | yg =y, /1:\/ (13a) Pg =W (Yg) -¥g
Yo =0-163 | @y = gl (153) wg =W(Yg) - pg
Yio = 0+183 | yig =g /T, (173) | @19 =W (¥10) - ¥y
Vi =0-202 | @ =, 198) | vy =W(y) -0y

Table 11l Renumbering interpolation nodes from

spiral structure into linear structure

spiral
X+ pOgG) 1 alx)

spiral
yisoyj)wiyj)
linear
2n:0(zp) i V(zp)

Using Table Il and cubic-spline interpolation [5]-[7], we
obtain 26 nodes of interpolation and following continuous

functiorls
U (z) = interp[cspline(Z,0), Z,0,z], (4)
V (z) = interp[cspline(Z,5), Z,5,2] - )

Where 7 ={z,}, U ={u.},

Spatial period of sequence z ={z,} is 2a .

5 ={v,} (n=123..,26).

Note, that

calculation procedures represented in Tables 1,2,3 guaranteed
(at zero noise o, =0 ) the obvious equations
U(2) +V (z) =W(z) inthe nodes z =z, (atany &, i, 61),
which does not any guarantees for equations U(z) —U(z) =0,
V(z)-V(z) =0.

Now our aim is to find a single solution,V (z) for tandem
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by variation (i=12,.,N_; j=12,.., N, k=12.., N,)and
selection of correct combinations of three numbers
aj,pj, 0y Sorting  patterns G(z):ﬁ(z;ai;yj;ek) ,
V(2) =V (za;u;:6,) , we will search for the tandem
U(z),V(z) satisfying all above conditions (assumptions,
hypothesizes) A - K .

V. MARKERS OF ERRORS
When searching for the single U(z) and singleV (z) we
sort all N,N Ny >>1 patterns (and corresponding all

combinations  a;,u;,0, ). Any real combination of

key-numbers a1, 0 includes some small or very small
errors. We can’t measure immediately errors of tandem’s
restoration because both functions U(z),V(z) are assumed
unknown priori.

However, we have found as empirical fact - an errors in key
numbers are always accompanied: (1) by the appearance of
the fluctuations function on high spatial frequency ~ z/a

and its harmonics (the breach of the hypothesis K to
smoothness of U(z), V(z), see Section I11.); (2) by growing

of the modules function |U (iL)|, |V(iL)| on edges + L of

carrier |z| <L (the breach of the hypothesis J, see Section

I11). Thereby, we have built the quantitative criterion
¢ = ¢[a;]i; 0] of the choice correct key numbers:

e=a[5;ﬁ;6]=su+sv, (6)

s =15 +15) v +gcu]+aeu. @)

o = (e 1) o o), ®

lue =17 U(2)cos@r/@)dz 9)
lye =I5V (2)cos@r/@)dz, (10)
lys =17 U(2)sin(zz/&)dz, (11)
lys = [V (2)sin(z/ 8)dz . (12)
Sorting all values a; , wi o, 0y (i=12,..,N, ;

i=12,.., N, k=12,..,N,), we search for the minimum of
the calculated value €. But value (and its minimum) € not
error of restoration of searched tandem U(z), V(z). The
minimum of the value €[a;[i; 6], reached by choosing of three
correct key-numbers @ =a; =a, p=p; =p, 0=0,=0,
give us the tandem, most closing to the correct true functions
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U -0l V| <10™w| (13)

(see below).

Sensitivities AU,a) , A(V,d) , AU,n) , AV,

A(U,é) AV ,6) ((14)-(19)) of restored functions
U(z),V (z) to the key-numbers errors a=3a-a, p=p-p,
® =0-0 we can use only after tandem reconstruction (post
factum, using true model functions U(z),V(z) and on the

base of key-numbers hypothesizes 3, i, 6 and sorting of
many patterns) given by minimums of errors markers

e[@; 15 6]).

A(U,a) = Lim Max|G—U|/|§| (14)
a0 FER
A(V,a) = L|m Max|\7 —V|/|§| , (15)
St IR
A(U, ) = Lim MaxiJ U/l | (16)
[0 i |z|<L
A(V, W= L|m |:Max|\/ V|1 |, (17)
e
A(U,0) = Lim |:Max|U ul/fel |, (18)
16]-0 l2J<L
AWV, 9)_\5\"30 Maxlvzs—Lv|/|e| (19)

Further we will consider several examples of tandem’s
components with different types of symmetry, with different
relations of amplitudes, with different velocity of the decline
to edge of the carrier.

VI. SYMMETRIC & ANTISYMMETRIC LORENTZ’S FUNCTIONS
IN TANDEM

In this section (and next section V) we consider [2], [3]
variants of Lorentz’s functions. Now consider combination of
symmetric and antisymmetrical functions

U(2) =1.8/[1+0.005(z — 2)° ] (20)

V (2) = 2.25in[0.1(z + 2)]/[L+ 0.005(z + 2)? | (21)
with coefficients of symmetry

L,(2)=-1,T,(2)=1 (22)
and true key numbers

a=2,0=0, p=U(0). (21)

Errors markers e[a;p; 0], e[a; ;0] , €[a;p;0] are pointing
to the values 3, fi, 0 closest with the parameters a, u, 0
of correct restoration. They are represented in Fig. 3.
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Figure 3

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (a) from their tandem W(z) (b), using exact
values a,p, 0, are represented in Fig. 4.
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One can note, that with any errors U(z)-U(z) ,
V (z) -V (z) of restoration, the sum of tandem U (z) -V (z) is
saved equal W(z) , following the calculation procedure

described in Section IV  (excluding, of course, the
interpolation errors).

Results U(z),V (z) of restoration of searched functions
U(z),V(z) () and errors of restoration U(z)-U(z) ,
V(z) -V (z) (b), admitting only one nonzero error a =0,
(A(U,a) = A(V,a) = 0.4, see (14), (15), are represented in
Fig. 6.

Searched solutions U(z),V(z)

Errors of reconstructed functions

* correct £1=0,0=0

error a=0.5

Figure 5

Results U(z),V (z) of restoration of searched functions
U(z),V(z) () and errors of restoration U(z)-U(z) ,
V(z)-V(z) (b), admitting only one nonzero error i =0
(AU, = AV, =1.25, see (16), (17)), are represented in
Fig. 6.
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Searcqed solutions U(z),V(z)

Errors of reconstructed functions

error { =0.2 ;correct a=a, 6 =0
Figure 6

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(2) ,
V(z) -V (z) (b), admitting only one nonzero error § =0,
(AWU,0) = A(V,0) = 0.5, see (18), (19)), are represented in
Fig. 7.

Searched solutions U(z),V (z)

w

N

o

[y

Errors of reconstructed functions

50 0
errorp =04 ; correct a=a , ©=0
Figure 7

50 Z

VII. ANTISYMMETRIC & ANTISYMMETRIC LORENTZ’S
FUNCTIONS IN TANDEM

For the following model functions

V(z) = 2.25in[0.1(z + 2] /[1+ 0.005(z + 2)° ] (24)

U (2) =1.8sin[0.15(z - 2) /[1+ 0.005(z - 2)?] (25)
and their coefficients of symmetry

I[,(2)=-1T,(z)=-1 (26)
with coefficients of symmetry

a=2,0=0, p=U(0). (27)

Errors markers e[a;; 0], e[a; ;0] , €fa;p;0] are pointing to
the values &, [i, 0 closest with the parameters a, p, 6 of
correct restoration  Figure 8.

Figure 8

Results U(z),V(z) of restoration of searched functions
U(z),V(z) (a) from their tandem W (z) (b), using exact values
a,, 0, are represented in Fig. 10.
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Results U(z),V(z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z)-V(z) (b), admitting only one nonzero error a =0
(A(U,a) = A(V,a) = 0.5, see (15), (16)), are represented in
Fig. 10.
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Searched solutions U(z),V (z)
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Errors of reconstructed functions

* correct £=0,0=0
Figure 10
Results U(z),V (z) of restoration of searched functions
U(z),V(z) () and errors of restoration U(z)-U(z) ,
V(z) -V (z) (b), admitting only one nonzero error i 0,
(AU, =~ AV, = 4.1, see (17), (18)), are represented in
Fig. 11.

error a=0.8

Searched solutions U (z),V (z)

Errors of reconstructed functions

error T=0.2 ;correct & = 0, §=0
Figure 11

Results U(z),V(z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z)-V(z) (b), admitting only one nonzero error ® = 0
(AU,0) = A(V,0) = 2.0, see (19), (20),are represented in
Fig. 12.
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Searched solutions U(z),V (z)

-50 0 50 Z

Errors of reconstructed functions

error 6=0.3 ;correct a=0, f=0
Figure 12

VIIl. SEPARATION OF TWO VERY CLOSELY SPACED
RADIO-ASTRONOMIC POINT-LIKE SOURCES

For simplicity we consider one-dimensional aperture antenna
with characteristic directivity pattern f(z) = sinc(35z) (all
variables are assumed dimensionless). The last means
amplitude response of antenna to some source, spaced in
antenna’s far zone, z is angle coordinate. We spaced two
point-like sources in the directions with coordinates
z=-a=-0005 and z=a=0.005 . Angle distance 2a
between two sources is less, than the width of directivity
pattern main petal. Output of antenna [4] are the
powers U (z) = [sinc[35(z +a)[[’  V (z) = 0.64[sinc[35(z — a) ][} ,
created by sources of the antenna’s output (amplitude of
source in the direction z = —a = —0.005 is 1, other source has

amplitude 0.8), I, =1,I, =1, 6=0. Errors markers
(6)-(12) e[a; ;0] , e[a; ;0] , €fa; ;0] are pointing to the
values 3, fi, 0 closest with the parameters a , p , 0 of
correct restoration Figure 13anderrors a=a-a, p=p-u,

9 =0-0 are going to zero if we are sorting patterns at . In
the case considered the smallness of angle parameter a
means antenna’s resolution (or superresolution).

0 1 1
-0.005 0 0.005 _
0

1 1
—0.005 0 0.005 _
m

Figure 13

Results U(z),V(z) of restoration of searched (true)
functions U(z),V(z) (a) from their tandem W (z) (b), using
exact key-numbers a, , 6 are represented in Figure 14.

Searched solutions U(z),V(z)
)
o

=
3]

=

Source function W(z)
o
(6] =

o

0
-02 -01 O

1 1
-02 -01 O

1
01 Z 02 017 02

at right choices three values
max a=a,p=0,0=0
Figure 14

u -GN -V|<10° W]

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (@) and errors of restoration U(z)-U(z) ,

V() -V(z) (b), admitting only one nonzero error a =0,
(AU,a) = A(V,a) = 8.1 see (15), (16)) are represented in
Fig. 15.

2
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E o _1q 1 1 1

(22
% § -0.2 0 0.2 z
%) i

error @=0.001 ; correct T=0,6=0
Figure 15

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z) -V (z) (b), admitting only one nonzero error i 0,
(AU, = AV, ) = 0.6 see (17), (18)) are represented in
Fig. 16.

Searched solutions U (z),V (z)
o
ol

=

o
U -uU
_q 1 1 1
-02 -01 0 0.1 0.2

o

~02 -01 0 01 02

Errors of reconstructed functions

error 1=0.3; correct 3 =0,0=0
Figure 16

Results U (z),V (z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z) -V (z) (b), admitting only one nonzero error ® =0,
(AU,6) = A(V,0) = 0.25, see (19), (20)) are represented in
Fig. 17.
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Figure 17

IX. TwoO GAUSSIAN FUNCTIONS

In this section we will test the restoration procedure
(section V) on the case of two Gaussian functions

U (z) = 2.2exp[-0.005(z + 2)?] (32)
V(z) =1.8exp[-0.005(z - 2)°] (33)

with coefficients of symmetry
I,(2)=1, T, (z) =1. (34)
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And true combination of key-numbers
a=2,0=0, pn=U(0) (35)
Errors markers ¢[a; 0], ¢[a; ;0] , e[a; ;0] are pointing to
the values 3, i, 6 closest with the parameters a, u, 0 of
correct restoration are represented in Figure 18

;6]
.

0 0.4

0 —
1 i

|

Figure 18

Results U(z),V (z) of restoration of searched functions
U(z),V(2) (a) from their tandem W (z) (b), using exact values
a,, 0, are represented in Fig. 19.

Searched solutions U(z),V(z)

=
(62}

=

o
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Source function W(z)
o
1 =
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0

1
01 Z 02

-02 -01 O -02 -01 © 017 02
U _Gll - V1< 10 _5 at right choices threev_alues
| - || - |< |\N|max =0, m=0 8=0

Figure 19

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z) -V (z) (b), admitting only one nonzero error a =0,
(AU, a) = A(V,a) =19, see (15), (16)) are represented in
Fig. 20.

N

Searched solutions U(2),V (z)

=

Errors of solutions

(=)

correct ©=0,9=0
Figure 20

error a=05

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z) -V (z) (b), admitting only one nonzero error 0,
(AV,w =~ AU, =~1.2, see (17), (18)) are represented in
Figure 21.
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Searched solutions U(z) V (z)

-04r

Errors of reconstructed functions

-50 0
error 1=0.2

50 7

correct =0 , 0=0
Figure 21

Results U(z),V (z) of restoration of searched functions
U(z),V(z) (a) and errors of restoration U(z)-U(z) ,
V(z)-V(z) (b), admitting only one nonzero error © =0
(AV,0) = A(U,0) =1.1( see (19), (20)), are represented in
Figure 22.
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X. IDENTICAL AND DIFFERENT SEARCHED FUNCTIONS.

ASYMMETRIC SOURCE FUNCTION.

Figure 23-a represents the different error markers
£ = ¢(a;; 0), corresponding to searched Lorentz’s functions
U(z2) =12[1+0.005(z + 2)%] , V(2)=22[1+0.005(z-2)°]
with different amplitudes (1.2 and 2.2 continuous line) and
U(z) = 2201+ 0005(z+2)°] , V(2)=22[L+0005(z - 2)°]
(I, =T, =1) with identical amplitudes (2.2 and 2.2, dotted

line). We see, that case of different amplitudes (and
asymmetric W(z) ) gives us more sharp shape of error
markers ¢[3;[i;0] and more easy finding of key-numbers
a,u,0,than the case of identical amplitudes (and symmetric
W (z) ). More great difference (Figure 23-b) in the behavior of
error markers ¢[3;[i;0] we see in the cases of Gaussian
functions with different amplitudes (1.2 and 2.2, continuous
line) U (z) = 1.2ex0[-((z + 2/6)°1 , V(2) = 2.2ex0[-((z - 2)/6)*] and
the pair of Gaussian functions with identical amplitudes
U(2) = 22exp[-((z + 2/6) 21,V (2) = 2.2ex0[-((z — 2)/6)*] (2.2
and 2.2, dotted line). It is easy to see, that error marker
e[3;]1; 0] is quite non-sensitive on interval 0 <a<?2.
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Now we consider symmetric source function W(z) as only
one Gaussian function

W(z):WG(z):4exp[—(z/40)2] (36)
(Figure 24-a) or only one Lorentz’s function
W (z) =W, (2) = 4/[1+(z/40)2] (37)

(Figure 24-b). Let’s initiate the search (above section IV) for
tandem of symmetric (I, =T, =1) functions on the same

carrier |z| < L, observing behavior of the marker of the error

¢[3;[;0] . In this case amplitudes of pairs of searched
symmetric functions can be of only identical amplitudes. In
the case of Gaussian source function w (z) the calculation

procedure of section IV generates single pair “U,V ” of

smooth symmetric “own functions”, attached to concrete
single “own number” of the “continuum spectrum of own
numbers”

3<a<l10. (38)

On the other hand, Lorentz’s source function generates only
one pair “U,V ”, but error marker ¢[a; ;0] does not show
the key-number a sufficiently clear.

(a) 5 (b)
st &(@ 1 0) . N ECHHD)
unceasing
spectrum
of pairs
.
107 - >0.2 ~
v /a K‘V . a
R N 10 0 A 10
Figure 24

Graph of marker g[a;p; 6] in Figure 24 means, for instance,

that calculation procedure (described in Section 1V) gives true
solution U (z) of the equation

U(z-a)+U(z+a)=Wg(2) (39)

for each value a from interval (38). Taking into account the
condition

U(z-a)=U(z+a), (41)
(guaranteed by Section V), we can see, that
2U(z—a)=Wg(z) or 2U(z+a)=Wg(2). (42)
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In other words, Gaussian function W (z) can be represented

by the pair (39) of Gaussian functions U (z —a)and U (z + a)
with shift a in the interval (38).

XI. CONCLUSION

Main conclusion: to separate both similar continuous smooth
symmetric function of given their tandem (doing it by single
way) we need only three true key-numbers, known before or
founded by sorting patterns. Represented numerical results
have an empirical nature and seemed sufficiently unexpected.
This is why we used many graphs in this paper.
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